Early Feeding and Energetics of Lake-Rearing Chinook Salmon

Michele Koehler, Si Simenstad, Jeff Cordell, Dave Beauchamp

University of Washington School of Aquatic and Fishery Sciences

and

Kurt Fresh* and Dave Seiler
Washington Department of Fish & Wildlife
*currently at NOAA-Fisheries

With support from METRO King County and the WDFW

Is food supply a major limiting factor for lake-rearing juvenile chinook?

- Little known about how juvenile chinook utilize lake habitats
- Is Lake-rearing a viable alternative to "stream-type" & "ocean-type" strategies
- What do they eat? When? How much?
- Evaluate feeding/rearing conditions in the lake from growth performance and consumption

Well-studied: aquatic insects (midges), terrestrial insects, epibenthic crustaceans, zooplankton

(Dunford 1975; Levings et al. 1991; Kjelson et al. 1982; Healey 1998; Cordell et al. 2001)

In lakes?

Only one study! Stream-type chinook in the littoral zone of a pristine lake ate: aquatic insects, terrestrial insects, and zooplankton

(Clemens 1934)

Lake Washington, circa 1890...

Lake Washington, 2003

Wild Chinook Lake-Entry Timing Patterns

Wild chinook migration Is bimodal from both Cedar R & Bear Cr

Wild chinook migration Is bimodal in both Cedar R & Bear Cr

Fry migrants remain small at Lake-entry through early April

Fry in the lake are Larger than new entries

Quantifying Trophic Linkages. Interaction Strength may vary among seasons or between life stages

Use Bioenergetics Model to Estimate the Amount of Food needed to Satisfy Growth

•
$$C = M + W + G$$

- Cons. = f(Body Wt, Temp, Prey energy)
- Metabolism = f(Body Wt, Temp, Activity)
- Waste = f(Ration size, Temp for some spp)
- Growth (g) = Net energy (J)/Energy density (J/g)
 - Growth can be (+ or -) somatic or gonadal tissue

Characteristic Curves

Weight Effects

Temperature Effects

 $\mathbf{gO}_2/(\mathbf{g/d})$

Weight (g)

Temperature (°C)

Temperature-Dependent Energy Budget

Optimal Temperature Declines with Declining Ration

SAMPLING DESIGN

- •1999 and 2000
- March through June
- •WDFW beach seine crew
- •30 m seine, 10 m from shore
- •Sites throughout the lake
- Primarily daytime

METHODS

- Recorded fork length
- Recorded weight
- Non-lethal gastric lavage
- •250 μm sieve
- Samples preserved in alcohol

Model Inputs

- -Each entering cohort is assigned an Initial & Final Wt
- -Model then grows fish according to temperature Diet and food quality to fit final wt

- -Temperature increased Monthly
- -Max. Temp. modified by fish moving into thermocline

Daylight:

- -Few fish are in the upper water column during daylight except large and very small fish
- -Could be in schools, near bottom or near shore

Dusk

-Smolt-sized targets migrate To upper 20 m at dusk

Night

- -Smolt-sized targets fully dispersed in upper 20 m at night
- -Net samples confirmed that chinook, sockeye, smelt, sticklebacks & cutthroat composed most of the targets

Night: Highest densities were consistently Found in the upper 20 m in all areas

RESULTS

Chinook in Lake Washington consumed emergent insect and zooplankton prey

Daphnia spp.:

- •Larger than other zooplankton
- •Seasonal presence in lake
- •Consumed in water column

Chironomids (midges):

- •Larvae inhabit epibenthos
- •Present through spring
- •Consumed as pupae in water column & surface

Terrestrial Invertebrates:

?

?

- •Fall or blown from riparian vegetation
 - Present throughout the spring
 - Consumed at water's surface

Temporal Consumption Patterns of Migrant Fry

Total Biomass Contribution over the Lake-Rearing Period

Feb 10 - June 10 Grew from 0.6 to 13.5 g Consumed 72 g (80% max feeding rate) 18% Growth Efficiency

Diet of hatchery and wild fish

 Wild and hatchery chinook consume similar types of prey in different proportions. 	Percent of Total Biomass	
	Hatchery Chinook June only	Wild Chinook Feb-June
•ZOOPLANKTON	82%	19%
•AQUATIC INSECTS	7%	68%
•TERRESTRIAL INSECTS	1%	3%
•OTHER	10%	10%
•MEAN FORK LENGTH (mm)	115	98

Growth Performance

-All Migrant Cohorts exhibit
Positive Growth
-Early Lake-Entry results in
Larger body size in June than
Smolts from Bear Cr or Cedar R

- -Temperature increased Monthly
- -Max. Temp. modified by fish moving into thermocline

- -All Migrant Cohorts exhibit
 Positive Growth
 -Early Lake-Entry results in
 Larger body size in June than
 Smolts from Bear Cr or Cedar R
- -Consumption rates vary amongGroups and Months-Consumption responds tochanges in Temperature & Diet
- -Growth Efficiency generally declined for most cohorts during mid-April through June -GE responds to changes in Temperature & Food Quality
- -Temperature increased Monthly
- -Max. Temp. modified by fish moving into thermocline

- -All Migrant Cohorts exhibit
 Positive Growth
 -Early Lake-Entry results in
 Larger body size in June than
 Smolts from Bear Cr or Cedar R
- -Consumption rates vary amongGroups and Months-Consumption responds tochanges in Temperature & Diet
- -Growth Efficiency generally declined for most cohorts during mid-April through June -GE responds to changes in Temperature & Food Quality
- -Temperature increased Monthly
- -Max. Temp. modified by fish moving into thermocline

Growth and Feeding Performance in Lake Washington

Bioenergetics Approach:

Consumption = Metabolism + Waste + Growth

Size ● Temperature ● Food Availability

In Lake Washington...

4000 J/g

High growth rates!

How does growth in Lake Washington compare to growth in estuaries?

Bioenergetics Approach:

Consumption = Metabolism + Waste + Growth

Size ● Temperature ● Food Availability

In estuaries...

3400 - 4500 J/g

4000 J/a

4200 - 7600 J/g

Rapid, but variable growth

REARING

Lake Washington Estuary

Behavior: Small chinook use nearshore habitats, larger fish move to offshore habitats		√
Prey: emergent and terrestrial insects and epibenthic organisms in the nearshore, zooplankton in offshore habitats	√	✓
Opportunity for growth before ocean	✓	√
Refugia from predators	?	√
Physiological adaptation to saltwater	NO!	\checkmark

Conclusions

- Lake-rearing Chinook exhibited high consumption and growth
- Stream-type smolts are smaller than lakerearing juveniles
- Littoral distribution and forage base (chironomids) important through May
- Shift to pelagic forage base (*Daphnia*) in June-joined by Hatchery Chinook & Coho
- Food supply not currently a limiting factor!
- Predation probably the greatest limitation

Acknowledgements

Funded by METRO King County and WDFW

Additional support from Cities of Seattle (SPU) & Bellevue

WASHINGTON